摘要:
气溶胶飞行时间质谱仪( ATOFMS)在对气溶胶粒子的测量过程中,产生大量包含单粒子化学成分和粒径信息的数据。本研究采用具备矢量量化与数据降维能力的自组织特征映射网络( SOM ),对自制的气溶胶飞行时间质谱仪24 h采集到的室内大气气溶胶质谱数据进行聚类分析。获得“含钙”、“盐类和二次气溶胶”、“二次颗粒”、“有机胺”、“富含钾有机物”、“无机盐”和“土壤”等20类颗粒。相比于其它聚类方法,SOM可进行可视化分析,对神经元进行再次聚类,聚类中心多。这些分类信息将有助于评估气溶胶粒子的反应和毒性,以及鉴别气溶胶粒子的起源。