一文打尽人工智能和机器学习网络资源,赶紧收藏!

杭州卫生信息

转自:大数据文摘|bigdatadigest

编译:Chloe 朝夕 修竹 Aileen


谷歌刚刚上线的机器学习课程刷屏科技媒体头条。激动过后,多数AI学习者会陷入焦虑:入坑人工智能,到底要从何入手?

的确,如今学习人工智能最大的困难不是找不到资料,更多同学的痛苦是:网上资源太多了,以至于没法知道从哪儿开始搜索,也没法知道搜到什么程度。

为了节省大家的时间,我们搜遍网络把最好的免费资源汇总整理到这篇文章当中。这些链接够你学上很久,而且你看完本文一定会再次惊叹:现在网上关于机器学习、深度学习和人工智能的信息真的非常多。

本文罗列了以下几个方面的学习资源,供大家收藏。

研究人员


许多著名的人工智能研究人员都在网络上有很强的影响力。下面我列出了20个专家,也给出了能够找到他们详细信息的网站。

◦ Sebastian Thrun

http://robots.stanford.edu

◦ Yann Lecun

http://yann.lecun.com

◦ Nando de Freitas

http://www.cs.ubc.ca/~nando/

◦ Andrew Ng

http://www.andrewng.org

◦ Daphne Koller

http://ai.stanford.edu/users/koller/

◦ Adam Coates

http://cs.stanford.edu/~acoates/

◦ Jürgen Schmidhuber

http://people.idsia.ch/~juergen/

◦ Geoffrey Hinton

http://www.cs.toronto.edu/~hinton/

◦ Terry Sejnowski

http://www.salk.edu/scientist/terrence-sejnowski/

◦ Michael Jordan

https://people.eecs.berkeley.edu/~jordan/

◦ Peter Norvig

http://norvig.com

◦ Yoshua Bengio

http://www.iro.umontreal.ca/~bengioy/yoshua_en/

◦ Ian Goodfellow

http://www.iangoodfellow.com

◦ Andrej Karpathy

http://karpathy.github.io

◦ Richard Socher

http://www.socher.org

◦ Demis Hassabis

http://demishassabis.com

◦ Christopher Manning

https://nlp.stanford.edu/~manning/

◦ Fei-Fei Li

http://vision.stanford.edu/people.html

◦ François Chollet

https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en

◦ Larry Carin

http://people.ee.duke.edu/~lcarin/

◦ Dan Jurafsky

https://web.stanford.edu/~jurafsky/

◦ Oren Etzioni

http://allenai.org/team/orene/


人工智能研究机构


许多研究机构致力于促进人工智能的研究与开发。下面我列出了一些机构的网站。

◦ Open AI

https://openai.com

◦ Deep Mind

https://deepmind.com

◦ Google Research

https://research.googleblog.com

◦ AWS AI

https://aws.amazon.com/blogs/ai/

◦ Facebook AI Research

https://research.fb.com/category/facebook-ai-research-fair/

◦ Microsoft Research

https://www.microsoft.com/en-us/research/

◦ Baidu Research

http://research.baidu.com

◦ Intel AI

https://software.intel.com/en-us/ai-academy

◦ AI²

http://allenai.org

◦ Partnership on AI

https://www.partnershiponai.org


视频课程


网上也有大量的视频课程和教程,其中很多都是免费的,还有一些付费的也很不错,但是在这篇文章中我只提供免费内容的链接。下面我列出的这些免费课程可以让你学上好几个月。

◦ Coursera — Machine Learning (Andrew Ng) 

https://www.coursera.org/learn/machine-learning#syllabus

◦ Coursera — Neural Networks for Machine Learning (Geoffrey Hinton) 

https://www.coursera.org/learn/neural-networks

◦ Machine Learning (mathematicalmonk)

https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA

◦ Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas) 

http://course.fast.ai/start.html

◦ Stanford CS231n — Convolutional Neural Networks for Visual Recognition (Winter 2016)

https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA

◦ 斯坦福CS231n【中字】视频

http://study.163.com/course/introduction/1003223001.htm

◦ Stanford CS224n — Natural Language Processing with Deep Learning (Winter 2017)

https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6

◦ Oxford Deep NLP 2017 (Phil Blunsom et al.)

https://github.com/oxford-cs-deepnlp-2017/lectures

◦ 牛津Deep NLP【中字】视频 

http://study.163.com/course/introduction/1004336028.htm

◦ Reinforcement Learning (David Silver) 

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

◦ Practical Machine Learning Tutorial with Python (sentdex) 

https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM


YouTube


YouTube上有很多频道或者用户都经常会发布一些AI或者机器学习相关的内容,我把这些链接按照订阅数/观看数多少列示在下边,这样方便看出来哪个更受欢迎。

◦ sendex(22.5万订阅,2100万次观看)

https://www.youtube.com/user/sentdex

◦ Siraj Raval(14万订阅,500万次观看) 

https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A

◦ Two Minute Papers(6万订阅,330万次观看) 

https://www.youtube.com/user/keeroyz

◦ DeepLearning.TV(4.2万订阅,140万观看) 

https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ

◦ Data School(3.7万订阅,180万次观看) 

https://www.youtube.com/user/dataschool

◦ Machine Learning Recipes with Josh Gordon(32.4万次观看) 

https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal 

◦ Artificial Intelligence — Topic(1万订阅) 

https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ

◦ Allen Institute for Artificial Intelligence (AI2)(1.6千订阅,6.9万次观看) 

https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ

◦ Machine Learning at Berkeley(634订阅,4.8万次观看) 

https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg

◦ Understanding Machine Learning — Shai Ben-David(973订阅,4.3万次观看) 

https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q

◦ Machine Learning TV(455订阅,1.1万次观看) 

https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw


博客


虽然人工智能和机器学习现在这么火,但是我很惊讶地发现相关博主并没有那么多。可能是因为内容比较复杂,把有意义的部分整理出来需要花很大精力;也有可能是因为类似Quora这样的平台比较多,专家们回答问题更方便也不需要花太多时间做详细论述。 下面我会按照推特的关注数排序介绍一些博主,他们一直在做人工智能相关的原创内容,而不只是一些新闻摘要或者公司博客。

◦ Andrej Karpathy(推特关注数6.9万)

http://karpathy.github.io

◦ i am trask(推特关注数1.4万)

http://iamtrask.github.io

◦ Christopher Olah(推特关注数1.3万)

http://colah.github.io

◦ Top Bots(推特关注数1.1万)

http://www.topbots.com

◦ WildML(推特关注数1万)

http://www.wildml.com

◦ Distill(推特关注数9千)

https://distill.pub

◦ Machine Learning Mastery(推特关注数5千) 

http://machinelearningmastery.com/blog/

◦ FastML(推特关注数5千)

http://fastml.com

◦ Adventures in NI(推特关注数5千)

https://joanna-bryson.blogspot.de

◦ Sebastian Ruder(推特关注数3千)

http://sebastianruder.com

◦ Unsupervised Methods(推特关注数1.7千)

http://unsupervisedmethods.com

◦ Explosion(推特关注数1千)

https://explosion.ai/blog/

◦ Tim Dettmers(推特关注数1千)

http://timdettmers.com

◦ When trees fall…(推特关注数265)

http://blog.wtf.sg

◦ ML@B(推特关注数80)

https://ml.berkeley.edu/blog/


Quora


Quora已经成为人工智能和机器学习的重要资源,许多顶尖的研究人员会在上面回答问题。下面我列出了一些主要关于人工智能的话题,如果你想自定义你的Quora喜好,你可以选择订阅这些话题。记得去查看每个话题下的FAQ部分(例如机器学习下常见问题解答),你可以看到Quora社区里提供的一些常见问题列表。

◦ 计算机科学 (560万关注)

https://www.quora.com/topic/Computer-Science

◦ 机器学习 (110万关注)

https://www.quora.com/topic/Machine-Learning

◦ 人工智能 (63.5万关注)

https://www.quora.com/topic/Artificial-Intelligence

◦ 深度学习 (16.7万关注)

https://www.quora.com/topic/Deep-Learning

◦ 自然语言处理 (15.5 万关注)

https://www.quora.com/topic/Natural-Language-Processing

◦ 机器学习分类(11.9万关注)

https://www.quora.com/topic/Classification-machine-learning

◦ 通用人工智能(8.2万 关注)

https://www.quora.com/topic/Artificial-General-Intelligence

◦ 卷积神经网络 (2.5万关注)

https://www.quora.com/topic/Convolutional-Neural-Networks-1?merged_tid=360493

◦ 计算语言学(2.3万关注)

https://www.quora.com/topic/Computational-Linguistics

◦ 循环神经网络(1.74万关注)

https://www.quora.com/topic/Recurrent-Neural-Networks-RNNs


(END)


杭州市卫生信息中心

微信号:zjhzhic