一文打尽人工智能和机器学习网络资源,赶紧收藏!
转自:大数据文摘|bigdatadigest
编译:Chloe 朝夕 修竹 Aileen
谷歌刚刚上线的机器学习课程刷屏科技媒体头条。激动过后,多数AI学习者会陷入焦虑:入坑人工智能,到底要从何入手?
的确,如今学习人工智能最大的困难不是找不到资料,更多同学的痛苦是:网上资源太多了,以至于没法知道从哪儿开始搜索,也没法知道搜到什么程度。
为了节省大家的时间,我们搜遍网络把最好的免费资源汇总整理到这篇文章当中。这些链接够你学上很久,而且你看完本文一定会再次惊叹:现在网上关于机器学习、深度学习和人工智能的信息真的非常多。
本文罗列了以下几个方面的学习资源,供大家收藏。
研究人员
许多著名的人工智能研究人员都在网络上有很强的影响力。下面我列出了20个专家,也给出了能够找到他们详细信息的网站。
◦ Sebastian Thrun
http://robots.stanford.edu
◦ Yann Lecun
http://yann.lecun.com
◦ Nando de Freitas
http://www.cs.ubc.ca/~nando/
◦ Andrew Ng
http://www.andrewng.org
◦ Daphne Koller
http://ai.stanford.edu/users/koller/
◦ Adam Coates
http://cs.stanford.edu/~acoates/
◦ Jürgen Schmidhuber
http://people.idsia.ch/~juergen/
◦ Geoffrey Hinton
http://www.cs.toronto.edu/~hinton/
◦ Terry Sejnowski
http://www.salk.edu/scientist/terrence-sejnowski/
◦ Michael Jordan
https://people.eecs.berkeley.edu/~jordan/
◦ Peter Norvig
http://norvig.com
◦ Yoshua Bengio
http://www.iro.umontreal.ca/~bengioy/yoshua_en/
◦ Ian Goodfellow
http://www.iangoodfellow.com
◦ Andrej Karpathy
http://karpathy.github.io
◦ Richard Socher
http://www.socher.org
◦ Demis Hassabis
http://demishassabis.com
◦ Christopher Manning
https://nlp.stanford.edu/~manning/
◦ Fei-Fei Li
http://vision.stanford.edu/people.html
◦ François Chollet
https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
◦ Larry Carin
http://people.ee.duke.edu/~lcarin/
◦ Dan Jurafsky
https://web.stanford.edu/~jurafsky/
◦ Oren Etzioni
http://allenai.org/team/orene/
人工智能研究机构
许多研究机构致力于促进人工智能的研究与开发。下面我列出了一些机构的网站。
◦ Open AI
https://openai.com
◦ Deep Mind
https://deepmind.com
◦ Google Research
https://research.googleblog.com
◦ AWS AI
https://aws.amazon.com/blogs/ai/
◦ Facebook AI Research
https://research.fb.com/category/facebook-ai-research-fair/
◦ Microsoft Research
https://www.microsoft.com/en-us/research/
◦ Baidu Research
http://research.baidu.com
◦ Intel AI
https://software.intel.com/en-us/ai-academy
◦ AI²
http://allenai.org
◦ Partnership on AI
https://www.partnershiponai.org
视频课程
网上也有大量的视频课程和教程,其中很多都是免费的,还有一些付费的也很不错,但是在这篇文章中我只提供免费内容的链接。下面我列出的这些免费课程可以让你学上好几个月。
◦ Coursera — Machine Learning (Andrew Ng)
https://www.coursera.org/learn/machine-learning#syllabus
◦ Coursera — Neural Networks for Machine Learning (Geoffrey Hinton)
https://www.coursera.org/learn/neural-networks
◦ Machine Learning (mathematicalmonk)
https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA
◦ Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas)
http://course.fast.ai/start.html
◦ Stanford CS231n — Convolutional Neural Networks for Visual Recognition (Winter 2016)
https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
◦ 斯坦福CS231n【中字】视频
http://study.163.com/course/introduction/1003223001.htm
◦ Stanford CS224n — Natural Language Processing with Deep Learning (Winter 2017)
https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
◦ Oxford Deep NLP 2017 (Phil Blunsom et al.)
https://github.com/oxford-cs-deepnlp-2017/lectures
◦ 牛津Deep NLP【中字】视频
http://study.163.com/course/introduction/1004336028.htm
◦ Reinforcement Learning (David Silver)
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
◦ Practical Machine Learning Tutorial with Python (sentdex)
https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM
YouTube
YouTube上有很多频道或者用户都经常会发布一些AI或者机器学习相关的内容,我把这些链接按照订阅数/观看数多少列示在下边,这样方便看出来哪个更受欢迎。
◦ sendex(22.5万订阅,2100万次观看)
https://www.youtube.com/user/sentdex
◦ Siraj Raval(14万订阅,500万次观看)
https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
◦ Two Minute Papers(6万订阅,330万次观看)
https://www.youtube.com/user/keeroyz
◦ DeepLearning.TV(4.2万订阅,140万观看)
https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ
◦ Data School(3.7万订阅,180万次观看)
https://www.youtube.com/user/dataschool
◦ Machine Learning Recipes with Josh Gordon(32.4万次观看)
https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal
◦ Artificial Intelligence — Topic(1万订阅)
https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ
◦ Allen Institute for Artificial Intelligence (AI2)(1.6千订阅,6.9万次观看)
https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ
◦ Machine Learning at Berkeley(634订阅,4.8万次观看)
https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg
◦ Understanding Machine Learning — Shai Ben-David(973订阅,4.3万次观看)
https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q
◦ Machine Learning TV(455订阅,1.1万次观看)
https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw
博客
虽然人工智能和机器学习现在这么火,但是我很惊讶地发现相关博主并没有那么多。可能是因为内容比较复杂,把有意义的部分整理出来需要花很大精力;也有可能是因为类似Quora这样的平台比较多,专家们回答问题更方便也不需要花太多时间做详细论述。 下面我会按照推特的关注数排序介绍一些博主,他们一直在做人工智能相关的原创内容,而不只是一些新闻摘要或者公司博客。
◦ Andrej Karpathy(推特关注数6.9万)
http://karpathy.github.io
◦ i am trask(推特关注数1.4万)
http://iamtrask.github.io
◦ Christopher Olah(推特关注数1.3万)
http://colah.github.io
◦ Top Bots(推特关注数1.1万)
http://www.topbots.com
◦ WildML(推特关注数1万)
http://www.wildml.com
◦ Distill(推特关注数9千)
https://distill.pub
◦ Machine Learning Mastery(推特关注数5千)
http://machinelearningmastery.com/blog/
◦ FastML(推特关注数5千)
http://fastml.com
◦ Adventures in NI(推特关注数5千)
https://joanna-bryson.blogspot.de
◦ Sebastian Ruder(推特关注数3千)
http://sebastianruder.com
◦ Unsupervised Methods(推特关注数1.7千)
http://unsupervisedmethods.com
◦ Explosion(推特关注数1千)
https://explosion.ai/blog/
◦ Tim Dettmers(推特关注数1千)
http://timdettmers.com
◦ When trees fall…(推特关注数265)
http://blog.wtf.sg
◦ ML@B(推特关注数80)
https://ml.berkeley.edu/blog/
Quora
Quora已经成为人工智能和机器学习的重要资源,许多顶尖的研究人员会在上面回答问题。下面我列出了一些主要关于人工智能的话题,如果你想自定义你的Quora喜好,你可以选择订阅这些话题。记得去查看每个话题下的FAQ部分(例如机器学习下常见问题解答),你可以看到Quora社区里提供的一些常见问题列表。
◦ 计算机科学 (560万关注)
https://www.quora.com/topic/Computer-Science
◦ 机器学习 (110万关注)
https://www.quora.com/topic/Machine-Learning
◦ 人工智能 (63.5万关注)
https://www.quora.com/topic/Artificial-Intelligence
◦ 深度学习 (16.7万关注)
https://www.quora.com/topic/Deep-Learning
◦ 自然语言处理 (15.5 万关注)
https://www.quora.com/topic/Natural-Language-Processing
◦ 机器学习分类(11.9万关注)
https://www.quora.com/topic/Classification-machine-learning
◦ 通用人工智能(8.2万 关注)
https://www.quora.com/topic/Artificial-General-Intelligence
◦ 卷积神经网络 (2.5万关注)
https://www.quora.com/topic/Convolutional-Neural-Networks-1?merged_tid=360493
◦ 计算语言学(2.3万关注)
https://www.quora.com/topic/Computational-Linguistics
◦ 循环神经网络(1.74万关注)
https://www.quora.com/topic/Recurrent-Neural-Networks-RNNs
(END)
杭州市卫生信息中心
微信号:zjhzhic